Coordinated Double Machine Learning

Nitai Fingerhut, Matteo Sesia, Yaniv Romano

Research output: Contribution to journalConference articlepeer-review

Abstract

Double machine learning is a statistical method for leveraging complex black-box models to construct approximately unbiased treatment effect estimates given observational data with high-dimensional covariates, under the assumption of a partially linear model. The idea is to first fit on a subset of the samples two non-linear predictive models, one for the continuous outcome of interest and one for the observed treatment, and then to estimate a linear coefficient for the treatment using the remaining samples through a simple orthogonalized regression. While this methodology is flexible and can accommodate arbitrary predictive models, typically trained independently of one another, this paper argues that a carefully coordinated learning algorithm for deep neural networks may reduce the estimation bias. The improved empirical performance of the proposed method is demonstrated through numerical experiments on both simulated and real data.

Original languageEnglish
Pages (from-to)6499-6513
Number of pages15
JournalProceedings of Machine Learning Research
Volume162
StatePublished - 2022
Externally publishedYes
Event39th International Conference on Machine Learning, ICML 2022 - Baltimore, United States
Duration: 17 Jul 202223 Jul 2022
https://proceedings.mlr.press/v162/

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Coordinated Double Machine Learning'. Together they form a unique fingerprint.

Cite this