TY - JOUR
T1 - Cooperative effects and disorder
T2 - A scaling analysis of the spectrum of the effective atomic Hamiltonian
AU - Bellando, L.
AU - Gero, Aharon
AU - Akkermans, Eric
AU - Kaiser, R.
N1 - Publisher Copyright: © 2014 American Physical Society.
PY - 2014/12/15
Y1 - 2014/12/15
N2 - We study numerically the spectrum of the non-Hermitian effective Hamiltonian that describes the dipolar interaction of a gas of N蠑1 atoms with the radiation field. We analyze the interplay between cooperative effects and disorder for both scalar and vectorial radiation fields. We show that for dense gases, the resonance width distribution follows, both in the scalar and vectorial cases, a power law P(Γ)∼Γ-4/3 that originates from cooperative effects between more than two atoms. This power law is different from the P(Γ)∼Γ-1 behavior, which has been considered as a signature of Anderson localization of light in random systems. We show that in dilute clouds, the center of the energy distribution is described by Wigner's semicircle law in the scalar and vectorial cases. For dense gases, this law is replaced in the vectorial case by the Laplace distribution. Finally, we show that in the scalar case the degree of resonance overlap increases as a power law of the system size for dilute gases, but decays exponentially with the system size for dense clouds.
AB - We study numerically the spectrum of the non-Hermitian effective Hamiltonian that describes the dipolar interaction of a gas of N蠑1 atoms with the radiation field. We analyze the interplay between cooperative effects and disorder for both scalar and vectorial radiation fields. We show that for dense gases, the resonance width distribution follows, both in the scalar and vectorial cases, a power law P(Γ)∼Γ-4/3 that originates from cooperative effects between more than two atoms. This power law is different from the P(Γ)∼Γ-1 behavior, which has been considered as a signature of Anderson localization of light in random systems. We show that in dilute clouds, the center of the energy distribution is described by Wigner's semicircle law in the scalar and vectorial cases. For dense gases, this law is replaced in the vectorial case by the Laplace distribution. Finally, we show that in the scalar case the degree of resonance overlap increases as a power law of the system size for dilute gases, but decays exponentially with the system size for dense clouds.
UR - http://www.scopus.com/inward/record.url?scp=84918802434&partnerID=8YFLogxK
U2 - https://doi.org/10.1103/PhysRevA.90.063822
DO - https://doi.org/10.1103/PhysRevA.90.063822
M3 - مقالة
SN - 1050-2947
VL - 90
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 6
M1 - 063822
ER -