Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian

L. Bellando, Aharon Gero, Eric Akkermans, R. Kaiser

Research output: Contribution to journalArticlepeer-review

Abstract

We study numerically the spectrum of the non-Hermitian effective Hamiltonian that describes the dipolar interaction of a gas of N蠑1 atoms with the radiation field. We analyze the interplay between cooperative effects and disorder for both scalar and vectorial radiation fields. We show that for dense gases, the resonance width distribution follows, both in the scalar and vectorial cases, a power law P(Γ)∼Γ-4/3 that originates from cooperative effects between more than two atoms. This power law is different from the P(Γ)∼Γ-1 behavior, which has been considered as a signature of Anderson localization of light in random systems. We show that in dilute clouds, the center of the energy distribution is described by Wigner's semicircle law in the scalar and vectorial cases. For dense gases, this law is replaced in the vectorial case by the Laplace distribution. Finally, we show that in the scalar case the degree of resonance overlap increases as a power law of the system size for dilute gases, but decays exponentially with the system size for dense clouds.

Original languageEnglish
Article number063822
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume90
Issue number6
DOIs
StatePublished - 15 Dec 2014

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian'. Together they form a unique fingerprint.

Cite this