Abstract
We study the convolutional phase retrieval problem, of recovering an unknown signal x \in \mathbb C^{n} from m measurements consisting of the magnitude of its cyclic convolution with a given kernel a \in \mathbb C^{m} . This model is motivated by applications such as channel estimation, optics, and underwater acoustic communication, where the signal of interest is acted on by a given channel/filter, and phase information is difficult or impossible to acquire. We show that when a is random and the number of observations m is sufficiently large, with high probability x can be efficiently recovered up to a global phase shift using a combination of spectral initialization and generalized gradient descent. The main challenge is coping with dependencies in the measurement operator. We overcome this challenge by using ideas from decoupling theory, suprema of chaos processes and the restricted isometry property of random circulant matrices, and recent analysis of alternating minimization methods.
Original language | English |
---|---|
Article number | 8888195 |
Pages (from-to) | 1785-1821 |
Number of pages | 37 |
Journal | IEEE Transactions on Information Theory |
Volume | 66 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2020 |
Event | 31st Conference on Neural Information Processing Systems - Long Beach Convention Center, Long Beach, United States Duration: 4 Dec 2017 → 9 Dec 2017 Conference number: 31st |
Keywords
- Phase retrieval
- circulant convolution
- nonconvex optimization
- nonlinear inverse problem
All Science Journal Classification (ASJC) codes
- Information Systems
- Computer Science Applications
- Library and Information Sciences