Convergence of learning dynamics in information retrieval games

Omer Ben-Porat, Itay Rosenberg, Tennenholtz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider a game-theoretic model of information retrieval with strategic authors. We examine two different utility schemes: authors who aim at maximizing exposure and authors who want to maximize active selection of their content (i.e., the number of clicks). We introduce the study of author learning dynamics in such contexts. We prove that under the probability ranking principle (PRP), which forms the basis of the current state-of-the-art ranking methods, any better-response learning dynamics converges to a pure Nash equilibrium. We also show that other ranking methods induce a strategic environment under which such a convergence may not occur.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Pages1780-1787
Number of pages8
ISBN (Electronic)9781577358091
DOIs
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Convergence of learning dynamics in information retrieval games'. Together they form a unique fingerprint.

Cite this