Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4

Zhaowei Zhang, Naizhou Wang, Ning Cao, Aifeng Wang, Xiaoyuan Zhou, Kenji Watanabe, Takashi Taniguchi, Binghai Yan, Wei-bo Gao

Research output: Contribution to journalArticlepeer-review

Abstract

Symmetries, quantum geometries and electronic correlations are among the most important ingredients of condensed matters, and lead to nontrivial phenomena in experiments, for example, non-reciprocal charge transport. Of particular interest is whether the non-reciprocal transport can be manipulated. Here, we report the controllable large non-reciprocal charge transport in the intrinsic magnetic topological insulator MnBi2Te4. The current direction relevant resistance is observed at chiral edges, which is magnetically switchable, edge position sensitive and stacking sequence controllable. Applying gate voltage can also effectively manipulate the non-reciprocal response. The observation and manipulation of non-reciprocal charge transport reveals the fundamental role of chirality in charge transport of MnBi2Te4, and pave ways to develop van der Waals spintronic devices by chirality engineering.
Original languageEnglish
Article number6191
JournalNature Communications
Volume13
DOIs
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4'. Together they form a unique fingerprint.

Cite this