TY - JOUR
T1 - Control of laser plasma accelerated electrons for light sources
AU - Andre, T.
AU - Andriyash, I. A.
AU - Loulergue, A.
AU - Labat, M.
AU - Roussel, E.
AU - Ghaith, A.
AU - Khojoyan, M.
AU - Thaury, C.
AU - Valleau, M.
AU - Briquez, F.
AU - Marteau, F.
AU - Tavakoli, K.
AU - N'Gotta, P.
AU - Dietrich, Y.
AU - Lambert, G.
AU - Malka, V.
AU - Benabderrahmane, C.
AU - Veteran, J.
AU - Chapuis, L.
AU - El Ajjouri, T.
AU - Sebdaoui, M.
AU - Hubert, N.
AU - Marcouille, O.
AU - Berteaud, P.
AU - Leclercq, N.
AU - El Ajjouri, M.
AU - Rommeluere, P.
AU - Bouvet, F.
AU - Duval, J. -P.
AU - Kitegi, C.
AU - Blache, F.
AU - Mahieu, B.
AU - Corde, S.
AU - Gautier, J.
AU - Ta Phuoc, K.
AU - Goddet, J. P.
AU - Lestrade, A.
AU - Herbeaux, C.
AU - Evain, C.
AU - Szwaj, C.
AU - Bielawski, S.
AU - Tafzi, A.
AU - Rousseau, P.
AU - Smartsev, S.
AU - Polack, F.
AU - Dennetiere, D.
AU - Bourassin-Bouchet, C.
AU - De Oliveira, C.
AU - Couprie, M. -E.
N1 - This work was partially supported by the European Research Council for the Advanced Grants COXINEL (340015, PI: M.-E. C.) and X-Five (339128, PI: V.M.), the EuPRAXIA design study (653782) and the Fondation de la Cooperation Scientifique (QUAPEVA-2012-058T). The authors acknowledge J. Daillant, A. Nadji, P. Morin, A. Taleb, A. Thompson and A. Rousse for their support. The authors would like also to thank members of the Accelerator and Engineering Division and of the Experimental Division of SOLEIL, J. L. Lancelot and his team at Sigmaphi for the joint development of the QUAPEVA magnets. S.C., J.G., J.P.G., G.L., B.M., V.M., P. Rou., S.S., A.T., K.T.P. and C.T. worked on the laser-based electron acceleration. The line was designed by A.Lo. with M.-E.C., M.L., K.T. and modelled by T.A., I.A.A, M.K., A.Lo. and E.R. Equipments were prepared by C.B., P.B., F.Bo., F.Br., M.-E.C., Y.D., T.E.A., A.G., C.K., A.Lo., O.M., F.M., P.N., M.V. and J.V. for the magnetic elements and the undulator, T.A., C.B.-B., M.E.C., D.D., M.-E.A., N.H., G.L., A.Lo., M.L., F.P., K.T.P. and C.T. for the diagnostics. K.T. and C.D.O worked on the mechanical design and assembly, J.-P.D., C.H., P.Rom. on the vacuum, T.A., M.-E.C., M.L., A.Le., M.S. and M.V. on the alignment, T.A., I.A., F.Br., L.C., M.L, N.L., A.Lo., E.R., M.V. on the control system. T.A., I.A.A, S.B., S.C., C.E., M.-E.C., J.G., J.P.G., A.G., M.K., A.Lo., M.L., G.L., B.M., E.R., S.S., C.S., K.T.P. and C.T. worked on the experiment. Data were analysed by T.A., I.A.A., S.C., M.-E.C., M.K., A.Lo., M.L., E.R. and C.T. The paper was written by I.A.A., M.-E.C., A.Lo., M.L. and E.R.
PY - 2018/4/6
Y1 - 2018/4/6
N2 - With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8m transport path. These results pave the way to applications demanding in terms of beam quality.
AB - With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8m transport path. These results pave the way to applications demanding in terms of beam quality.
U2 - 10.1038/s41467-018-03776-x
DO - 10.1038/s41467-018-03776-x
M3 - مقالة
SN - 2041-1723
VL - 9
JO - Nature Communications
JF - Nature Communications
M1 - 1334
ER -