TY - GEN
T1 - Constrained Key-Homomorphic PRFs from standard lattice assumptions (Or: How to secretly embed a circuit in your PRF)
AU - Brakerski, Zvika
AU - Vaikuntanthan, Vinod
N1 - Publisher Copyright: © International Association for Cryptologic Research 2015.
PY - 2015
Y1 - 2015
N2 - Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto 14) constructed pseudorandom functions (PRFs) from the Learning with Errors (LWE) assumption by embedding combinatorial objects, a path and a tree respectively, in instances of the LWE problem. In this work, we show how to generalize this approach to embed circuits, inspired by recent progress in the study of Attribute Based Encryption. Embedding a universal circuit for some class of functions allows us to produce constrained keys for functions in this class, which gives us the first standard-lattice-assumption-based constrained PRF (CPRF) for general bounded-description bounded-depth functions, for arbitrary polynomial bounds on the description size and the depth. (A constrained key w.r.t a circuit C enables one to evaluate the PRF on all x for which C(x) = 1, but reveals nothing on the PRF values at other points.) We rely on the LWE assumption and on the one-dimensional SIS (Short Integer Solution) assumption, which are both related to the worst case hardness of general lattice problems. Previous constructions for similar function classes relied on such exotic assumptions as the existence of multilinear maps or secure program obfuscation. The main drawback of our construction is that it does not allow collusion (i.e. to provide more than a single constrained key to an adversary). Similarly to the aforementioned previous works, our PRF family is also key homomorphic. Interestingly, our constrained keys are very short. Their length does not depend directly either on the size of the constraint circuit or on the input length. We are not aware of any prior construction achieving this property, even relying on strong assumptions such as indistinguishability obfuscation.
AB - Boneh et al. (Crypto 13) and Banerjee and Peikert (Crypto 14) constructed pseudorandom functions (PRFs) from the Learning with Errors (LWE) assumption by embedding combinatorial objects, a path and a tree respectively, in instances of the LWE problem. In this work, we show how to generalize this approach to embed circuits, inspired by recent progress in the study of Attribute Based Encryption. Embedding a universal circuit for some class of functions allows us to produce constrained keys for functions in this class, which gives us the first standard-lattice-assumption-based constrained PRF (CPRF) for general bounded-description bounded-depth functions, for arbitrary polynomial bounds on the description size and the depth. (A constrained key w.r.t a circuit C enables one to evaluate the PRF on all x for which C(x) = 1, but reveals nothing on the PRF values at other points.) We rely on the LWE assumption and on the one-dimensional SIS (Short Integer Solution) assumption, which are both related to the worst case hardness of general lattice problems. Previous constructions for similar function classes relied on such exotic assumptions as the existence of multilinear maps or secure program obfuscation. The main drawback of our construction is that it does not allow collusion (i.e. to provide more than a single constrained key to an adversary). Similarly to the aforementioned previous works, our PRF family is also key homomorphic. Interestingly, our constrained keys are very short. Their length does not depend directly either on the size of the constraint circuit or on the input length. We are not aware of any prior construction achieving this property, even relying on strong assumptions such as indistinguishability obfuscation.
UR - http://www.scopus.com/inward/record.url?scp=84924368832&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/978-3-662-46497-7_1
DO - https://doi.org/10.1007/978-3-662-46497-7_1
M3 - منشور من مؤتمر
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
BT - Theory of Cryptography
A2 - Dodis, Yevgeniy
A2 - Nielsen, Jesper Buus
PB - Springer Verlag
T2 - 12th Theory of Cryptography Conference, TCC 2015
Y2 - 23 March 2015 through 25 March 2015
ER -