Constant-round interactive proofs for delegating computation

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The celebrated IP = PSPACE Theorem of Lund et al. (J.ACM 1992) and Shamir (J.ACM 1992), allows an all-powerful but untrusted prover to convince a polynomial-time verifier of the validity of extremely complicated statements (as long as they can be evaluated using polynomial space). The interactive proof system designed for this purpose requires a polynomial number of communication rounds and an exponentialtime (polynomial-space complete) prover. In this paper, we study the power of more efficient interactive proof systems. Our main result is that for every statement that can be evaluated in polynomial time and bounded-polynomial space there exists an interactive proof that satisfies the following strict efficiency requirements: (1) the honest prover runs in polynomial time, (2) the verifier is almost linear time (and under some conditions even sub linear), and (3) the interaction consists of only a constant number of communication rounds. Prior to this work, very little was known about the power of efficient, constant-round interactive proofs (rather than arguments). This result represents significant progress on the round complexity of interactive proofs (even if we ignore the running time of the honest prover), and on the expressive power of interactive proofs with polynomial-time honest prover (even if we ignore the round complexity). This result has several applications, and in particular it can be used for verifiable delegation of computation. Our construction leverages several new notions of interactive proofs, which may be of independent interest. One of these notions is that of unambiguous interactive proofs where the prover has a unique successful strategy. Another notion is that of probabilistically checkable interactive proofs1 (PCIPs) where the verifier only reads a few bits of the transcript in checking the proof (this could be viewed as an interactive extension of PCPs).

Original languageEnglish
Title of host publicationSTOC 2016 - Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing
EditorsYishay Mansour, Daniel Wichs
Pages49-62
Number of pages14
ISBN (Electronic)9781450341325
DOIs
StatePublished - 19 Jun 2016
Externally publishedYes
Event48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016 - Cambridge, United States
Duration: 19 Jun 201621 Jun 2016

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
Volume19-21-June-2016

Conference

Conference48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016
Country/TerritoryUnited States
CityCambridge
Period19/06/1621/06/16

Keywords

  • Delegation
  • Interactive proofs
  • Verifiable computation

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Constant-round interactive proofs for delegating computation'. Together they form a unique fingerprint.

Cite this