TY - GEN
T1 - Constant-Round Arguments from One-Way Functions
AU - Amit, Noga
AU - Rothblum, Guy N.
N1 - Publisher Copyright: © 2023 Owner/Author.
PY - 2023/6/2
Y1 - 2023/6/2
N2 - We study the following question: what cryptographic assumptions are needed for obtaining constant-round computationally-sound argument systems? We focus on argument systems with almost-linear verification time for subclasses of P, such as depth-bounded computations. Kilian's celebrated work [STOC 1992] provides such 4-message arguments for P (actually, for NP) using collision-resistant hash functions. We show that one-way functions suffice for obtaining constant-round arguments of almost-linear verification time for languages in P that have log-space uniform circuits of linear depth and polynomial size. More generally, the complexity of the verifier scales with the circuit depth. Furthermore, our argument systems (like Kilian's) are doubly-efficient; that is, the honest prover strategy can be implemented in polynomial-time. Unconditionally sound interactive proofs for this class of computations do not rely on any cryptographic assumptions, but they require a linear number of rounds [Goldwasser, Kalai and Rothblum, STOC 2008]. Constant-round interactive proof systems of linear verification complexity are not known even for NC (indeed, even for AC1).
AB - We study the following question: what cryptographic assumptions are needed for obtaining constant-round computationally-sound argument systems? We focus on argument systems with almost-linear verification time for subclasses of P, such as depth-bounded computations. Kilian's celebrated work [STOC 1992] provides such 4-message arguments for P (actually, for NP) using collision-resistant hash functions. We show that one-way functions suffice for obtaining constant-round arguments of almost-linear verification time for languages in P that have log-space uniform circuits of linear depth and polynomial size. More generally, the complexity of the verifier scales with the circuit depth. Furthermore, our argument systems (like Kilian's) are doubly-efficient; that is, the honest prover strategy can be implemented in polynomial-time. Unconditionally sound interactive proofs for this class of computations do not rely on any cryptographic assumptions, but they require a linear number of rounds [Goldwasser, Kalai and Rothblum, STOC 2008]. Constant-round interactive proof systems of linear verification complexity are not known even for NC (indeed, even for AC1).
UR - http://www.scopus.com/inward/record.url?scp=85163107393&partnerID=8YFLogxK
U2 - https://doi.org/10.1145/3564246.3585244
DO - https://doi.org/10.1145/3564246.3585244
M3 - منشور من مؤتمر
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 1537
EP - 1544
BT - STOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
A2 - Saha, Barna
A2 - Servedio, Rocco A.
T2 - 55th Annual ACM Symposium on Theory of Computing, STOC 2023
Y2 - 20 June 2023 through 23 June 2023
ER -