Constant-Round Arguments from One-Way Functions

Noga Amit, Guy N. Rothblum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study the following question: what cryptographic assumptions are needed for obtaining constant-round computationally-sound argument systems? We focus on argument systems with almost-linear verification time for subclasses of P, such as depth-bounded computations. Kilian's celebrated work [STOC 1992] provides such 4-message arguments for P (actually, for NP) using collision-resistant hash functions. We show that one-way functions suffice for obtaining constant-round arguments of almost-linear verification time for languages in P that have log-space uniform circuits of linear depth and polynomial size. More generally, the complexity of the verifier scales with the circuit depth. Furthermore, our argument systems (like Kilian's) are doubly-efficient; that is, the honest prover strategy can be implemented in polynomial-time. Unconditionally sound interactive proofs for this class of computations do not rely on any cryptographic assumptions, but they require a linear number of rounds [Goldwasser, Kalai and Rothblum, STOC 2008]. Constant-round interactive proof systems of linear verification complexity are not known even for NC (indeed, even for AC1).

Original languageEnglish
Title of host publicationSTOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
EditorsBarna Saha, Rocco A. Servedio
Pages1537-1544
Number of pages8
ISBN (Electronic)9781450399135
DOIs
StatePublished - 2 Jun 2023
Event55th Annual ACM Symposium on Theory of Computing, STOC 2023 - Orlando, United States
Duration: 20 Jun 202323 Jun 2023

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference55th Annual ACM Symposium on Theory of Computing, STOC 2023
Country/TerritoryUnited States
CityOrlando
Period20/06/2323/06/23

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Constant-Round Arguments from One-Way Functions'. Together they form a unique fingerprint.

Cite this