Constant ciphertext-rate non-committing encryption from standard assumptions

Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg, Giulio Malavolta

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Non-committing encryption (NCE) is a type of public key encryption which comes with the ability to equivocate ciphertexts to encryptions of arbitrary messages, i.e., it allows one to find coins for key generation and encryption which “explain” a given ciphertext as an encryption of any message. NCE is the cornerstone to construct adaptively secure multiparty computation [Canetti et al. STOC’96] and can be seen as the quintessential notion of security for public key encryption to realize ideal communication channels. A large body of literature investigates what is the best message-to-ciphertext ratio (i.e., the rate) that one can hope to achieve for NCE. In this work we propose a near complete resolution to this question and we show how to construct NCE with constant rate in the plain model from a variety of assumptions, such as the hardness of the learning with errors (LWE), the decisional Diffie-Hellman (DDH), or the quadratic residuosity (QR) problem. Prior to our work, constructing NCE with constant rate required a trusted setup and indistinguishability obfuscation [Canetti et al. ASIACRYPT’17].

Original languageEnglish
Title of host publicationTheory of Cryptography - 18th International Conference, TCC 2020, Proceedings
EditorsRafael Pass, Krzysztof Pietrzak
PublisherSpringer Science and Business Media B.V.
Pages58-87
Number of pages30
ISBN (Electronic)978-3-030-64375-1
ISBN (Print)9783030643744
DOIs
StatePublished - 2020
Event18th International Conference on Theory of Cryptography, TCCC 2020 - Durham, United States
Duration: 16 Nov 202019 Nov 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12550 LNCS

Conference

Conference18th International Conference on Theory of Cryptography, TCCC 2020
Country/TerritoryUnited States
CityDurham
Period16/11/2019/11/20

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Constant ciphertext-rate non-committing encryption from standard assumptions'. Together they form a unique fingerprint.

Cite this