Confidence-Budget Matching for Sequential Budgeted Learning

Yonathan Efroni, Nadav Merlis, Aadirupa Saha, Shie Mannor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A core element in decision-making under uncertainty is the feedback on the quality of the performed actions. However, in many applications, such feedback is restricted. For example, in recommendation systems, repeatedly asking the user to provide feedback on the quality of recommendations will annoy them. In this work, we formalize decision-making problems with querying budget, where there is a (possibly time-dependent) hard limit on the number of reward queries allowed. Specifically, we consider multi-armed bandits, linear bandits, and reinforcement learning problems. We start by analyzing the performance of 'greedy' algorithms that query a reward whenever they can. We show that in fully stochastic settings, doing so performs surprisingly well, but in the presence of any adversity, this might lead to linear regret. To overcome this issue, we propose the Confidence-Budget Matching (CBM) principle that queries rewards when the confidence intervals are wider than the inverse square root of the available budget. We analyze the performance of CBM based algorithms in different settings and show that they perform well in the presence of adversity in the contexts, initial states, and budgets.

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages2937-2947
Number of pages11
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Confidence-Budget Matching for Sequential Budgeted Learning'. Together they form a unique fingerprint.

Cite this