Computational study of transonic limit cycle oscillation phenomenon on F-16 fighter aircraft

Michael Iovnovich, Daniella E. Raveh, Dan Michaels, Motti Adar

Research output: Contribution to journalArticlepeer-review

Abstract

The paper presents a Reynolds-averaged Navier-Stokes computational aeroelastic investigation of the limit cycle oscillations phenomenon of the F-16 aircraft wing, with correlation to flight tests. The study is the first step toward a new computational capability, currently under development, to enable the prediction of the limit cycle oscillations phenomenon for Israeli Air Force purposes. The study presents aeroelastic simulations of the full-span F-16 fighter computational model including a linear modal structural model and an aerodynamic wing model. The simulations are performed at flow conditions for which limit cycle oscillations were encountered in flight tests. The effects of dynamic pressure, structural damping, angle of attack, and turbulence modeling on the characteristics of the phenomenon are discussed. The relationship between flutter and limit cycle oscillations is investigated, and the origin of limit cycle oscillations is identified as nonlinear, self-sustained, periodic, shock-wave oscillations on the upper surface of the wing. These oscillations are suggested to suppress flutter into limit cycle oscillations.

Original languageEnglish
Pages (from-to)783-793
Number of pages11
JournalJournal of Aircraft
Volume54
Issue number2
DOIs
StatePublished - 2017

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Computational study of transonic limit cycle oscillation phenomenon on F-16 fighter aircraft'. Together they form a unique fingerprint.

Cite this