TY - GEN
T1 - CompoNet
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
AU - Schor, Nadav
AU - Katzir, Oren
AU - Zhang, Hao
AU - Cohen-Or, Daniel
N1 - Publisher Copyright: © 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Data-driven generative modeling has made remarkable progress by leveraging the power of deep neural networks. A reoccurring challenge is how to enable a model to generate a rich variety of samples from the entire target distribution, rather than only from a distribution confined to the training data. In other words, we would like the generative model to go beyond the observed samples and learn to generate ''unseen'', yet still plausible, data. In our work, we present CompoNet, a generative neural network for 2D or 3D shapes that is based on a part-based prior, where the key idea is for the network to synthesize shapes by varying both the shape parts and their compositions. Treating a shape not as an unstructured whole, but as a (re-)composable set of deformable parts, adds a combinatorial dimension to the generative process to enrich the diversity of the output, encouraging the generator to venture more into the ''unseen''. We show that our part-based model generates richer variety of plausible shapes compared with baseline generative models. To this end, we introduce two quantitative metrics to evaluate the diversity of a generative model and assess how well the generated data covers both the training data and unseen data from the same target distribution.
AB - Data-driven generative modeling has made remarkable progress by leveraging the power of deep neural networks. A reoccurring challenge is how to enable a model to generate a rich variety of samples from the entire target distribution, rather than only from a distribution confined to the training data. In other words, we would like the generative model to go beyond the observed samples and learn to generate ''unseen'', yet still plausible, data. In our work, we present CompoNet, a generative neural network for 2D or 3D shapes that is based on a part-based prior, where the key idea is for the network to synthesize shapes by varying both the shape parts and their compositions. Treating a shape not as an unstructured whole, but as a (re-)composable set of deformable parts, adds a combinatorial dimension to the generative process to enrich the diversity of the output, encouraging the generator to venture more into the ''unseen''. We show that our part-based model generates richer variety of plausible shapes compared with baseline generative models. To this end, we introduce two quantitative metrics to evaluate the diversity of a generative model and assess how well the generated data covers both the training data and unseen data from the same target distribution.
UR - http://www.scopus.com/inward/record.url?scp=85081937661&partnerID=8YFLogxK
U2 - https://doi.org/10.1109/ICCV.2019.00885
DO - https://doi.org/10.1109/ICCV.2019.00885
M3 - منشور من مؤتمر
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 8758
EP - 8767
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 27 October 2019 through 2 November 2019
ER -