Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel

William Sam Tobelaim, Meidan Dvir, Guy Lebel, Meng Cui, Tal Buki, Asher Peretz, Milit Marom, Yoni Haitin, Diomedes E. Logothetis, Joel Alan Hirsch, Bernard Attali

Research output: Contribution to journalArticlepeer-review

Abstract

Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol- 4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition.

Original languageEnglish
Pages (from-to)E869-E878
JournalProceedings of the National Academy of Sciences of the United States of America
Volume114
Issue number5
DOIs
StatePublished - 31 Jan 2017

Keywords

  • Calmodulin
  • KCNQ
  • LQT
  • PIP
  • Potassium channel

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Competition of calcified calmodulin N lobe and PIP2 to an LQT mutation site in Kv7.1 channel'. Together they form a unique fingerprint.

Cite this