TY - GEN
T1 - Communication coverage for independently moving robots
AU - Gil, Stephanie
AU - Feldman, Dan
AU - Rus, Daniela
PY - 2012
Y1 - 2012
N2 - We consider the task of providing communication coverage to a group of sensing robots (sensors) moving independently to collect data. We provide communication via controlled placement of router vehicles that relay messages from any sensor to any other sensor in the system under the assumptions of 1) no cooperation from the sensors, and 2) only sensor-router or router-router communication over a maximum distance of R is reliable. We provide a formal framework and design provable exact and approximate (faster) algorithms for finding optimal router vehicle locations that are updated according to sensor movement. Using vehicle limitations, such as bounded control effort and maximum velocities of the sensors, our algorithm approximates areas that each router can reach while preserving connectivity and returns an expiration time window over which these positions are guaranteed to maintain communication of the entire system. The expiration time is compared against computation time required to update positions as a decision variable for choosing either the exact or approximate solution for maintaining connectivity with the sensors on-line.
AB - We consider the task of providing communication coverage to a group of sensing robots (sensors) moving independently to collect data. We provide communication via controlled placement of router vehicles that relay messages from any sensor to any other sensor in the system under the assumptions of 1) no cooperation from the sensors, and 2) only sensor-router or router-router communication over a maximum distance of R is reliable. We provide a formal framework and design provable exact and approximate (faster) algorithms for finding optimal router vehicle locations that are updated according to sensor movement. Using vehicle limitations, such as bounded control effort and maximum velocities of the sensors, our algorithm approximates areas that each router can reach while preserving connectivity and returns an expiration time window over which these positions are guaranteed to maintain communication of the entire system. The expiration time is compared against computation time required to update positions as a decision variable for choosing either the exact or approximate solution for maintaining connectivity with the sensors on-line.
UR - http://www.scopus.com/inward/record.url?scp=84872333457&partnerID=8YFLogxK
U2 - https://doi.org/10.1109/IROS.2012.6386226
DO - https://doi.org/10.1109/IROS.2012.6386226
M3 - Conference contribution
SN - 9781467317375
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 4865
EP - 4872
BT - 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
T2 - 25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
Y2 - 7 October 2012 through 12 October 2012
ER -