Abstract
Immune checkpoint blockade using antibodies to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) benefits a limited number of cancer patients. SS1P and LMB-100 are immunotoxins that target mesothelin. We observed delayed responses to SS1P in patients with mesothelioma suggesting that antitumor immunity was induced. Our goal was to stimulate antitumor immunity by combining SS1P or LMB-100 with anti–CTLA-4. We constructed a BALB/c breast cancer cell line expressing human mesothelin (66C14-M), which was implanted in one or two locations. SS1P or LMB-100 was injected directly into established tumors and anti–CTLA-4 administered i.p. In mice with two tumors, one tumor was injected with immunotoxin and the other was not. The complete regression rate was 86% for the injected tumors and 53% for the uninjetced tumors. No complete regressions occurred when drugs were given separately. In regressing tumors, dying and dead tumor cells were intermingled with PMNs and surrounded by a collar of admixed eosinophils and mononuclear cells. Tumor regression was associated with increased numbers of tumor-infiltrating CD8þ cells and blocked by administration of antibodies to CD8. Surviving mice were protected from tumor rechallenge by 66C14 cells not expressing mesothelin, indicating the development of antitumor immunity. The antitumor effect was abolished when a mutant noncytotoxic variant was used instead of LMB-100, showing that the antitumor response is not mediated by recognition of a foreign bacterial protein. Our findings support developing a therapy composed of immunotoxins and checkpoint inhibitors for patients.
Original language | English |
---|---|
Pages (from-to) | 685-694 |
Number of pages | 10 |
Journal | Cancer Immunology Research |
Volume | 5 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2017 |
All Science Journal Classification (ASJC) codes
- Immunology
- Cancer Research