Combining Internal and External Constraints for Unrolling Shutter in Videos

Eyal Naor, Itai Antebi, Shai Bagon, Michal Irani

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Videos obtained by rolling-shutter (RS) cameras result in spatially-distorted frames. These distortions become significant under fast camera/scene motions. Undoing effects of RS is sometimes addressed as a spatial problem, where objects need to be rectified/displaced in order to generate their correct global shutter (GS) frame. However, the cause of the RS effect is inherently temporal, not spatial. In this paper we propose a space-time solution to the RS problem. We observe that despite the severe differences between their xy frames, a RS video and its corresponding GS video tend to share the exact same xt slices – up to a known sub-frame temporal shift. Moreover, they share the same distribution of small 2D xt-patches, despite the strong temporal aliasing within each video. This allows to constrain the GS output video using video-specific constraints imposed by the RS input video. Our algorithm is composed of 3 main components: (i) Dense temporal upsampling between consecutive RS frames using an off-the-shelf method, (which was trained on regular video sequences), from which we extract GS “proposals”. (ii) Learning to correctly merge an ensemble of such GS “proposals” using a dedicated MergeNet. (iii) A video-specific zero-shot optimization which imposes the similarity of xt-patches between the GS output video and the RS input video. Our method obtains state-of-the-art results on benchmark datasets, both numerically and visually, despite being trained on a small synthetic RS/GS dataset. Moreover, it generalizes well to new complex RS videos with motion types outside the distribution of the training set (e.g., complex non-rigid motions) – videos which competing methods trained on much more data cannot handle well. We attribute these generalization capabilities to the combination of external and internal constraints.
Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
EditorsShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
PublisherSpringer Science and Business Media B.V.
Pages119-134
Number of pages16
Volume13677
ISBN (Electronic)978-3-031-19790-1
ISBN (Print)9783031197895
DOIs
StatePublished - 2022
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13677 LNCS

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Combining Internal and External Constraints for Unrolling Shutter in Videos'. Together they form a unique fingerprint.

Cite this