Abstract
Automated radiology report generation has the potential to improve patient care and reduce the workload of radiologists. However, the path toward real-world adoption has been stymied by the challenge of evaluating the clinical quality of artificial intelligence (AI)-generated reports. We build a state-of-the-art report generation system for chest radiographs, called Flamingo-CXR, and perform an expert evaluation of AI-generated reports by engaging a panel of board-certified radiologists. We observe a wide distribution of preferences across the panel and across clinical settings, with 56.1% of Flamingo-CXR intensive care reports evaluated to be preferable or equivalent to clinician reports, by half or more of the panel, rising to 77.7% for in/outpatient X-rays overall and to 94% for the subset of cases with no pertinent abnormal findings. Errors were observed in human-written reports and Flamingo-CXR reports, with 24.8% of in/outpatient cases containing clinically significant errors in both report types, 22.8% in Flamingo-CXR reports only and 14.0% in human reports only. For reports that contain errors we develop an assistive setting, a demonstration of clinician–AI collaboration for radiology report composition, indicating new possibilities for potential clinical utility.
Original language | English |
---|---|
Journal | Nature Medicine |
DOIs | |
State | Accepted/In press - 2024 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Biochemistry,Genetics and Molecular Biology