CLIPascene: Scene Sketching with Different Types and Levels of Abstraction

Yael Vinker, Yuval Alaluf, Daniel Cohen-Or, Ariel Shamir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we present a method for converting a given scene image into a sketch using different types and multiple levels of abstraction. We distinguish between two types of abstraction. The first considers the fidelity of the sketch, varying its representation from a more precise portrayal of the input to a looser depiction. The second is defined by the visual simplicity of the sketch, moving from a detailed depiction to a sparse sketch. Using an explicit disentanglement into two abstraction axes - and multiple levels for each one - provides users additional control over selecting the desired sketch based on their personal goals and preferences. To form a sketch at a given level of fidelity and simplification, we train two MLP networks. The first network learns the desired placement of strokes, while the second network learns to gradually remove strokes from the sketch without harming its recognizability and semantics. Our approach is able to generate sketches of complex scenes including those with complex backgrounds (e.g. natural and urban settings) and subjects (e.g. animals and people) while depicting gradual abstractions of the input scene in terms of fidelity and simplicity. https://clipascene.github.io/CLIPascene/

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4123-4133
Number of pages11
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'CLIPascene: Scene Sketching with Different Types and Levels of Abstraction'. Together they form a unique fingerprint.

Cite this