TY - UNPB
T1 - Classy Ensemble
T2 - A Novel Ensemble Algorithm for Classification
AU - Sipper, Moshe
PY - 2024/1
Y1 - 2024/1
N2 - We present Classy Ensemble, a novel ensemble-generation algorithm for classification tasks, which aggregates models through a weighted combination of per-class accuracy. Tested over 153 machine learning datasets we demonstrate that Classy Ensemble outperforms two other well-known aggregation algorithms -- order-based pruning and clustering-based pruning -- as well as the recently introduced lexigarden ensemble generator. We then present three enhancements: 1) Classy Cluster Ensemble, which combines Classy Ensemble and cluster-based pruning; 2) Deep Learning experiments, showing the merits of Classy Ensemble over four image datasets: Fashion MNIST, CIFAR10, CIFAR100, and ImageNet; and 3) Classy Evolutionary Ensemble, wherein an evolutionary algorithm is used to select the set of models which Classy Ensemble picks from. This latter, combining learning and evolution, resulted in improved performance on the hardest dataset.
AB - We present Classy Ensemble, a novel ensemble-generation algorithm for classification tasks, which aggregates models through a weighted combination of per-class accuracy. Tested over 153 machine learning datasets we demonstrate that Classy Ensemble outperforms two other well-known aggregation algorithms -- order-based pruning and clustering-based pruning -- as well as the recently introduced lexigarden ensemble generator. We then present three enhancements: 1) Classy Cluster Ensemble, which combines Classy Ensemble and cluster-based pruning; 2) Deep Learning experiments, showing the merits of Classy Ensemble over four image datasets: Fashion MNIST, CIFAR10, CIFAR100, and ImageNet; and 3) Classy Evolutionary Ensemble, wherein an evolutionary algorithm is used to select the set of models which Classy Ensemble picks from. This latter, combining learning and evolution, resulted in improved performance on the hardest dataset.
U2 - 10.48550/arXiv.2302.10580
DO - 10.48550/arXiv.2302.10580
M3 - Preprint
BT - Classy Ensemble
ER -