Abstract
As data storage demands increase, the need for highly dense memory solutions becomes crucial. Magnetic nanostructures offer a pathway to achieve dense memory devices, but standard magnetic memory bit sizes are limited to over 50 nm due to fundamental ferromagnetic properties. In this study, a 10 nm chiral magnetic memory device is introduced using a self-assembly gold nano-floret device. The device is composed of a SiGe nanowire with a selectively decorated gold metallic shell deposited at the nanowire tip. The tip with the thiol linkers functions as a weak ferromagnet particle that is stabilized by the chiral ligands. The nano-floret functions as a high geometrical aspect ratio electrode measuring 30–60 nm in diameter and 1–10 microns in length. The mechanical contact of the Au with a counter Ti electrode forms a nanojunction that can be probed electrically, bridging the gap between the nanoscale and the microscale. In this junction, chiral molecules are adsorbed together with 10 nm super-paramagnetic iron oxide nanoparticles (SPIONs) forming a magnetic memory device. The same device provides valuable insights into the chiral monolayer properties on selected metal surfaces demonstrating a new approach for characterizing the molecular tilt angle in monolayers of chiral molecules.
Original language | English |
---|---|
Journal | Advanced Electronic Materials |
DOIs | |
State | Accepted/In press - 2025 |
Keywords
- CISS
- chiral magnetic memory
- molecular tilt angle characterization
- nano floret junction
- self-assembly
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials