Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry

Oscar Ávalos-Ovando, Eva Yazmin Santiago, Artur Movsesyan, Xiang Tian Kong, Peng Yu, Lucas V. Besteiro, Larousse Khosravi Khorashad, Hiromi Okamoto, Joseph M. Slocik, Miguel A. Correa-Duarte, Miguel Comesaña-Hermo, Tim Liedl, Zhiming Wang, Gil Markovich, Sven Burger, Alexander O. Govorov

Research output: Contribution to journalReview articlepeer-review

Abstract

This Perspective concerns the latest developments in the field of chiral nanocrystals (NCs) and metastructures, focusing primarily on plasmonic nanostructures. Such nanomaterials exhibit unusually strong near-field and electromagnetic responses that enable efficient biosensing and light manipulation. Herein we share our thoughts on the latest trends that mark what we call a paradigm shift for the vast and dynamic field of chiroptical materials. The topics to be considered include polarization-sensitive photocatalysis with chiral plasmonic NCs, chiral bioconjugates, DNA-based assemblies, chiral growth, and we also describe the fundamental challenges for optical induction of chirality, transfer of chirality between different scales, and theoretical issues that nanoscience is facing.

Original languageEnglish
Pages (from-to)2219-2236
Number of pages18
JournalACS Photonics
Volume9
Issue number7
DOIs
StatePublished - 20 Jul 2022

Keywords

  • DNA origami
  • bioassembly
  • chiral nanocrystals
  • chiral plasmonics
  • circular dichroism
  • photochemistry

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biotechnology
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry'. Together they form a unique fingerprint.

Cite this