Characterization of bimolecular reactive transport in heterogeneous porous media

Yaniv Edery, Giovanni M. Porta, Alberto Guadagnini, Harvey Scher, Brian Berkowitz

Research output: Contribution to journalArticlepeer-review

Abstract

We characterize the role of preferential pathways in controlling the dynamics of bimolecular reactive transport in a representative model of a heterogeneous porous medium. We examine a suite of numerical simulations that quantifies the irreversible bimolecular reaction , in a two-dimensional heterogeneous domain (with log-conductivity, Y), wherein solute A is injected along an inlet boundary to displace the resident solute B under uniform (in the mean) flow conditions. We explore the feedback between the reactive process and (a) the degree of system heterogeneity, as quantified by the unconditional variance of Y, , representing moderately to strongly heterogeneous media, and (b) the relative strengths of advective and diffusive mechanisms, as quantified by a grid P,clet number, . Our analysis is based on the identification of particle preferential pathways, focusing on particle residence time within cells employed to discretize the flow domain. These preferential pathways are formed mainly by high conductivity cells and generally contain an important component of (sometimes isolated and a relatively small number of) lower conductivity values. A key finding of our analysis is that while the former dominate the behavior, the latter are shown to provide a non-negligible contribution to the global number of reactions taking place in the domain for strongly heterogeneous media, i.e., for the largest investigated values of . Reactions are detected across the complete simulation time window (of about 5.5 pore volumes) for the strongly advective case. When diffusion plays an important role, the reactive process essentially stops after the injection of a limited amount (2.5) of pore volumes.

Original languageEnglish
Pages (from-to)291-310
Number of pages20
JournalTransport in Porous Media
Volume115
Issue number2
DOIs
StatePublished - 1 Nov 2016

Keywords

  • Heterogeneous conductivity fields
  • Numerical simulation
  • Particle tracking
  • Preferential pathways formation
  • Reactive solute transport

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Catalysis

Cite this