Abstract
Pre-formed Massart magnetite (Fe3O4) nanoparticles (NPs) have been successfully modified by positively charged lanthanide Ce(iii/iv) cations/[CeLn]3/4+ complexes by using a strong mono-electronic Ceric Ammonium Nitrate oxidant (CAN) as a Ce donor. The doping process is promoted by high-power ultrasonic irradiation. The reaction has been statistically optimized by Design of Experiments (DoE, MINITAB® 16 DoE software) to afford globally optimized magnetically responsive ultra-small 6.61 ± 2.04 nm-sized CANDOE-γ-Fe2O3 NPs that are highly positively charged (ξ potential: +45.7 mV). This innovative inorganic DoE-optimized NP surface modification by [CeLn] 3/4+ complexes enables an effective "fully inorganic-type" coordination attachment of a branched poly-cationic 25 kDa b-PEI25 polymer for siRNA loading and gene silencing. This innovative NP platform technology paves an efficient way for the successful development of a wide range of biomedicine and diagnostic-related applications.
Original language | English |
---|---|
Pages (from-to) | 6215-6225 |
Number of pages | 11 |
Journal | Journal of Materials Chemistry B |
Volume | 2 |
Issue number | 37 |
DOIs | |
State | Published - 7 Oct 2014 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Biomedical Engineering
- General Materials Science