TY - JOUR
T1 - Ceramide kinase-like (CERKL) interacts with neuronal calcium sensor proteins in the retina in a cation-dependent manner
AU - Nevet, Mariela J.
AU - Vekslin, Sharon
AU - Dizhoor, Alexander M.
AU - Olshevskaya, Elena V.
AU - Tidhar, Rotem
AU - Futerman, Anthony H.
AU - Ben-Yosef, Tamar
N1 - Israel Science Foundation [567/09]; National Institutes of Health [EY11522]Supported by the Israel Science Foundation Grant 567/09 (TB-Y) and the National Institutes of Health Grant EY11522 (AMD).
PY - 2012/7
Y1 - 2012/7
N2 - PURPOSE. CERKL encodes for a ceramide kinase (CERK)-like protein. CERKL mutations are associated with severe retinal degeneration. Several studies have been conducted to prove a biochemical similarity between CERK and CERKL enzymatic activities. However, so far there has been no evidence that CERKL phosphorylates ceramide or any other lipid substrate in vitro or in vivo. The purpose of this work was to characterize CERKL's function by identification of CERKL-interacting proteins in the mammalian retina. METHODS. CERKL-interacting proteins were identified implementing the Ras-recruitment system (RRS) on a bovine retina cDNA library. Co-immunoprecipitation (co-IP) in transfected cells and in photoreceptor outer segments was used to verify the identified interactions. Serial deletion constructs were used to map the interacting sites. CERKL's kinase activity was tested by a CERK activity assay. RESULTS. We identified an interaction between CERKL and several neuronal calcium sensor (NCS) proteins, including guanylate cyclase activating protein 1 (GCAP1), GCAP2, and recoverin. These interactions were confirmed by co-IP experiments in transfected mammalian cells. Moreover, the interaction between endogenous CERKL and GCAP2 was confirmed by co-IP in photoreceptor outer segments. We found that CERKL-GCAP interaction is cation dependent and is mediated by CERKL's N-terminal region and by GCAPs cationbinding domains (EF-hands 2-4). CONCLUSIONS. This study, which is the first to describe the interactions of CERKL with other retinal proteins, links CERKL to proteins involved in the photoresponse and Ca2+ signaling, providing important clues for future research required in this direction.
AB - PURPOSE. CERKL encodes for a ceramide kinase (CERK)-like protein. CERKL mutations are associated with severe retinal degeneration. Several studies have been conducted to prove a biochemical similarity between CERK and CERKL enzymatic activities. However, so far there has been no evidence that CERKL phosphorylates ceramide or any other lipid substrate in vitro or in vivo. The purpose of this work was to characterize CERKL's function by identification of CERKL-interacting proteins in the mammalian retina. METHODS. CERKL-interacting proteins were identified implementing the Ras-recruitment system (RRS) on a bovine retina cDNA library. Co-immunoprecipitation (co-IP) in transfected cells and in photoreceptor outer segments was used to verify the identified interactions. Serial deletion constructs were used to map the interacting sites. CERKL's kinase activity was tested by a CERK activity assay. RESULTS. We identified an interaction between CERKL and several neuronal calcium sensor (NCS) proteins, including guanylate cyclase activating protein 1 (GCAP1), GCAP2, and recoverin. These interactions were confirmed by co-IP experiments in transfected mammalian cells. Moreover, the interaction between endogenous CERKL and GCAP2 was confirmed by co-IP in photoreceptor outer segments. We found that CERKL-GCAP interaction is cation dependent and is mediated by CERKL's N-terminal region and by GCAPs cationbinding domains (EF-hands 2-4). CONCLUSIONS. This study, which is the first to describe the interactions of CERKL with other retinal proteins, links CERKL to proteins involved in the photoresponse and Ca2+ signaling, providing important clues for future research required in this direction.
UR - http://www.scopus.com/inward/record.url?scp=84866497961&partnerID=8YFLogxK
U2 - 10.1167/iovs.12-9770
DO - 10.1167/iovs.12-9770
M3 - مقالة
SN - 0146-0404
VL - 53
SP - 4565
EP - 4574
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 8
ER -