Abstract
Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations - cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell's passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.
Original language | English |
---|---|
Article number | 3938 |
Journal | Nature Communications |
Volume | 5 |
DOIs | |
State | Published - 29 May 2014 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy