Causal analysis of syntactic agreement mechanisms in neural language models

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, Yonatan Belinkov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Targeted syntactic evaluations have demonstrated the ability of language models to perform subject-verb agreement given difficult contexts. To elucidate the mechanisms by which the models accomplish this behavior, this study applies causal mediation analysis to pre-trained neural language models. We investigate the magnitude of models' preferences for grammatical inflections, as well as whether neurons process subject-verb agreement similarly across sentences with different syntactic structures. We uncover similarities and differences across architectures and model sizes-notably, that larger models do not necessarily learn stronger preferences. We also observe two distinct mechanisms for producing subject-verb agreement depending on the syntactic structure of the input sentence. Finally, we find that language models rely on similar sets of neurons when given sentences with similar syntactic structure.

Original languageEnglish
Title of host publicationACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference
Pages1828-1843
Number of pages16
ISBN (Electronic)9781954085527
StatePublished - 2021
EventJoint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021 - Virtual, Online
Duration: 1 Aug 20216 Aug 2021

Publication series

NameACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

ConferenceJoint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
CityVirtual, Online
Period1/08/216/08/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computational Theory and Mathematics
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Causal analysis of syntactic agreement mechanisms in neural language models'. Together they form a unique fingerprint.

Cite this