Canonical conditions for K/2 degrees of freedom

David Stotz, Syed Ali Jafar, Helmut Bolcskei, Shlomo Shamai Shitz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Stotz and Bölcskei, 2015, identified an explicit condition for K/2 degrees of freedom (DoF) in constant single-antenna interference channels (ICs). This condition is expressed in terms of linear independence - over the rationals - of monomials in the off-diagonal entries of the IC matrix and is satisfied for almost all IC matrices. There is, however, a prominent class of IC matrices that admits K/2 DoF but fails to satisfy this condition. The main contribution of the present paper is a more general condition for K/2 DoF (in fact for 1/2 DoF for each user) that, inter alia, encompasses this example class. While the existing condition by Stotz and Bölcskei is of algebraic nature, the new condition is canonical in the sense of capturing the essence of interference alignment by virtue of being expressed in terms of a generic injectivity condition that guarantees separability of signal and interference.

Original languageEnglish
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
Pages1292-1296
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - 10 Aug 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: 10 Jul 201615 Jul 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August

Conference

Conference2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period10/07/1615/07/16

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Cite this