TY - JOUR
T1 - Building Semipermeable Films One Monomer at a Time
T2 - Structural Advantages via Molecular Layer Deposition vs Interfacial Polymerization
AU - Welch, Brian C.
AU - Antonio, Emma N.
AU - Chaney, Thomas P.
AU - McIntee, Olivia M.
AU - Strzalka, Joseph
AU - Bright, Victor M.
AU - Greenberg, Alan R.
AU - Segal-Peretz, Tamar
AU - Toney, Michael
AU - George, Steven M.
N1 - Publisher Copyright: © 2024 American Chemical Society.
PY - 2024/2/13
Y1 - 2024/2/13
N2 - Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure-performance relationships, and membrane fabrication.
AB - Molecular layer deposition (MLD) provides the opportunity to perform condensation polymerization one vaporized monomer at a time for the creation of precise, selective nanofilms for desalination membranes. Here, we compare the structure, chemistry, and morphology of two types of commercial interfacial polymerzation (IP) membranes with lab-made MLD films. M-phenylenediamine (MPD) and trimesoyl chloride (TMC) produced a cross-linked, aromatic polyamide often used in reverse osmosis membranes at MLD growth rates of 2.9 Å/cycle at 115 °C. Likewise, piperazine (PIP) and TMC formed polypiperazine amide, a common selective layer in nanofiltration membranes, with MLD growth rates of 1.5 Å/cycle at 115 °C. Ellipsometry and X-ray reflectivity results suggest that the surface of the MLD films is comprised of polymer segments roughly two monomers in length, which are connected at one end to the cross-linked bulk layer. As a result of this structure as well as the triple-functionality of TMC, MPD-TMC had a temperature window of stable growth rate from 115 to 150 °C, which is unlike any non-cross-linked MLD chemistries reported in the literature. Compared to IP films, corresponding MLD films were denser and morphologically conformal, which suggests a reduction in void volumes; this explains the high degree of salt rejection and reduced flux previously observed for exceptionally thin MPD-TMC MLD membranes. Using X-ray photoelectron spectroscopy and infrared spectroscopy, MLD PIP-TMC films evidenced a completely cross-linked internal structure, which lacked amine and carboxyl groups, pointing to a hydrophobic bulk structure, ideal for optimized water flux. Grazing-incidence wide-angle X-ray scattering showed broad features in each polyamide with d-spacings of 5.0 Å in PIP-TMC compared to that of 3.8 Å in MPD-TMC. While MLD and IP films were structurally identical to PIP-TMC, MPD-TMC IP films had a structure that may have been altered by post-treatment compared to MLD films. These results provide foundational insights into the MLD process, structure-performance relationships, and membrane fabrication.
UR - http://www.scopus.com/inward/record.url?scp=85183526539&partnerID=8YFLogxK
U2 - https://doi.org/10.1021/acs.chemmater.3c02519
DO - https://doi.org/10.1021/acs.chemmater.3c02519
M3 - مقالة
SN - 0897-4756
VL - 36
SP - 1362
EP - 1374
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 3
ER -