Broadband coherent hyperspectral near-field imaging of plasmonic nanostructures

U. Arieli, M. Mrejen, H. Suchowski

Research output: Contribution to journalArticlepeer-review

Abstract

We develop a coherent hyperspectral near-field microscope using a combined nano-Fourier Transform Infra-Red (FTIR) spectroscope and a scattering Scanning Near-field Optical Microscope (s-SNOM) illuminated by an ultra-broadband few-cycle femtosecond source, spanning a spectrum from 660 to 1050 nm. Using this spatio-spectral approach, we resolve hyperspectral near-field response of a single plasmonic nano-antennas over 450 nm bandwidth with a spatial resolution of 40 nm and a spectral resolution of 50 cm −1 . In particular, we identify the electric near-field spatial distribution of the dipole resonant mode of various nano-antennas and observe, in accordance with previous theoretical reports, that those are spectrally red-shifted from their far-field response. Moreover, we are able to spectrally and spatially differentiate the near-field distribution of the dipole and quadrupole modes at the single nanoparticle level. Being coherent and short-pulsed, our technique opens the path for optical ultrafast characterization and control of light-matter interaction at the nanoscale.

Original languageEnglish
Pages (from-to)9815-9820
Number of pages6
JournalOptics Express
Volume27
Issue number7
DOIs
StatePublished - 1 Apr 2019

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Broadband coherent hyperspectral near-field imaging of plasmonic nanostructures'. Together they form a unique fingerprint.

Cite this