Bound star clusters observed in a lensed galaxy 460 Myr after the Big Bang

Angela Adamo, Larry D. Bradley, Eros Vanzella, Adélaïde Claeyssens, Brian Welch, Jose M. Diego, Guillaume Mahler, Masamune Oguri, Keren Sharon, Abdurro’uf, Tiger Yu Yang Hsiao, Xinfeng Xu, Matteo Messa, Augusto E. Lassen, Erik Zackrisson, Gabriel Brammer, Dan Coe, Vasily Kokorev, Massimo Ricotti, Adi ZitrinSeiji Fujimoto, Akio K. Inoue, Tom Resseguier, Jane R. Rigby, Yolanda Jiménez-Teja, Rogier A. Windhorst, Takuya Hashimoto, Yoichi Tamura

Research output: Contribution to journalArticlepeer-review

Abstract

The Cosmic Gems arc is among the brightest and highly magnified galaxies observed at redshift z ≈ 10.2 (ref. 1). However, it is an intrinsically ultraviolet faint galaxy, in the range of those now thought to drive the reionization of the Universe2–4. Hitherto the smallest features resolved in a galaxy at a comparable redshift are between a few hundreds and a few tens of parsecs (pc)5,6. Here we report JWST observations of the Cosmic Gems. The light of the galaxy is resolved into five star clusters located in a region smaller than 70 pc. They exhibit minimal dust attenuation and low metallicity, ages younger than 50 Myr and intrinsic masses of about 106M. Their lensing-corrected sizes are approximately 1 pc, resulting in stellar surface densities near 105M pc−2, three orders of magnitude higher than typical young star clusters in the local Universe7. Despite the uncertainties inherent to the lensing model, they are consistent with being gravitationally bound stellar systems, that is, proto-globular clusters. We conclude that star cluster formation and feedback likely contributed to shaping the properties of galaxies during the epoch of reionization.

Original languageAmerican English
Pages (from-to)513-516
Number of pages4
JournalNature
Volume632
Issue number8025
DOIs
StatePublished - 15 Aug 2024

All Science Journal Classification (ASJC) codes

  • General

Cite this