TY - GEN
T1 - Black-Hole Radiation Decoding Is Quantum Cryptography
AU - Brakerski, Zvika
N1 - Publisher Copyright: © 2023, International Association for Cryptologic Research.
PY - 2023
Y1 - 2023
N2 - We propose to study equivalence relations between phenomena in high-energy physics and the existence of standard cryptographic primitives, and show the first example where such an equivalence holds. A small number of prior works showed that high-energy phenomena can be explained by cryptographic hardness. Examples include using the existence of one-way functions to explain the hardness of decoding black-hole Hawking radiation (Harlow and Hayden 2013, Aaronson 2016), and using pseudorandom quantum states to explain the hardness of computing AdS/CFT dictionary (Bouland, Fefferman and Vazirani, 2020). In this work we show, for the former example of black-hole radiation decoding, that it also implies the existence of secure quantum cryptography. In fact, we show an existential equivalence between the hardness of black-hole radiation decoding and a variety of cryptographic primitives, including bit-commitment schemes and oblivious transfer protocols (using quantum communication). This can be viewed (with proper disclaimers, as we discuss) as providing a physical justification for the existence of secure cryptography. We conjecture that such connections may be found in other high-energy physics phenomena.
AB - We propose to study equivalence relations between phenomena in high-energy physics and the existence of standard cryptographic primitives, and show the first example where such an equivalence holds. A small number of prior works showed that high-energy phenomena can be explained by cryptographic hardness. Examples include using the existence of one-way functions to explain the hardness of decoding black-hole Hawking radiation (Harlow and Hayden 2013, Aaronson 2016), and using pseudorandom quantum states to explain the hardness of computing AdS/CFT dictionary (Bouland, Fefferman and Vazirani, 2020). In this work we show, for the former example of black-hole radiation decoding, that it also implies the existence of secure quantum cryptography. In fact, we show an existential equivalence between the hardness of black-hole radiation decoding and a variety of cryptographic primitives, including bit-commitment schemes and oblivious transfer protocols (using quantum communication). This can be viewed (with proper disclaimers, as we discuss) as providing a physical justification for the existence of secure cryptography. We conjecture that such connections may be found in other high-energy physics phenomena.
UR - http://www.scopus.com/inward/record.url?scp=85173043021&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/978-3-031-38554-4_2
DO - https://doi.org/10.1007/978-3-031-38554-4_2
M3 - منشور من مؤتمر
SN - 9783031385537
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 37
EP - 65
BT - Advances in Cryptology – CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Proceedings
A2 - Handschuh, Helena
A2 - Lysyanskaya, Anna
PB - Springer Science and Business Media B.V.
T2 - Advances in Cryptology – CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Proceedings
Y2 - 20 August 2023 through 24 August 2023
ER -