Bimodule structure of central simple algebras

Eliyahu Matzri, Louis H. Rowen, David Saltman, Uzi Vishne

Research output: Contribution to journalArticlepeer-review

Abstract

For a maximal separable subfield K of a central simple algebra A, we provide a semiring isomorphism between K–K-sub-bimodules of A and H–H-sub-bisets of G=Gal(L/F), where F=Cent(A), L is the Galois closure of K/F, and H=Gal(L/K). This leads to a combinatorial interpretation of the growth of dimK⁡((KaK)i), for fixed a∈A, especially in terms of Kummer subspaces.

Original languageEnglish
Pages (from-to)454-479
Number of pages26
JournalJournal of Algebra
Volume471
DOIs
StatePublished - 1 Feb 2017

Keywords

  • Bimodules
  • Division algebras
  • Subfields

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Bimodule structure of central simple algebras'. Together they form a unique fingerprint.

Cite this