Beating human analysts in nowcasting corporate earnings by using publicly available stock price and correlation features

Michael Kamp, Mario Boley, Thomas Gärtner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Corporate earnings are a crucial indicator for investment and business valuation. Despite their importance and the fact that classic econometric approaches fail to match analyst forecasts by orders of magnitude, the automatic prediction of corporate earnings from public data is not in the focus of current machine learning research. In this paper, we present for the first time a fully automatized machine learning method for earnings prediction that at the same time a) only relies on publicly available data and b) can outperform human analysts. The latter is shown empirically in an experiment involving all S&P 100 companies in a test period from 2008 to 2012. The approach employs a simple linear regression model based on a novel feature space of stock market prices and their pairwise correlations. With this work we follow the recent trend of nowcast-ing, i.e., of creating accurate contemporary forecasts of undisclosed target values based on publicly observable proxy variables.

Original languageAmerican English
Title of host publicationSIAM International Conference on Data Mining 2014, SDM 2014
EditorsMohammed Zaki, Zoran Obradovic, Pang Ning-Tan, Arindam Banerjee, Chandrika Kamath, Srinivasan Parthasarathy
PublisherSociety for Industrial and Applied Mathematics Publications
Pages641-649
Number of pages9
ISBN (Electronic)9781510811515
DOIs
StatePublished - 2014
Externally publishedYes
Event14th SIAM International Conference on Data Mining, SDM 2014 - Philadelphia, United States
Duration: 24 Apr 201426 Apr 2014

Publication series

NameSIAM International Conference on Data Mining 2014, SDM 2014
Volume2

Conference

Conference14th SIAM International Conference on Data Mining, SDM 2014
Country/TerritoryUnited States
CityPhiladelphia
Period24/04/1426/04/14

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Software

Cite this