Abstract
This work addresses the problem of target maneuver detection using passive bearing measurements when the target motion dynamics can be described by a discrete constant velocity (CV) model. The proposed expected likelihood (EL) maneuver detector (ELMD) extends the EL approach from a direction of arrival estimation framework to maneuver detection of targets governed by a CV model. As a result of its array signal processing nature, and in contrast to measurement residual-based maneuver detectors, ELMD does not require statistical assumptions of the bearing measurements, and its maneuver detection performance improves with increasing signal-to-noise ratio and sample support. Maneuver detection performance of ELMD and two conventional maneuver detectors for the passive bearings-only target tracking problem are evaluated in this work via simulations using mean detection delay, detection delay standard deviation, and probability of false alarm criteria. ELMD is shown to outperform the other two evaluated algorithms in all tested practical scenarios.
Original language | American English |
---|---|
Article number | 6978892 |
Pages (from-to) | 2974-2988 |
Number of pages | 15 |
Journal | IEEE Transactions on Aerospace and Electronic Systems |
Volume | 50 |
Issue number | 4 |
DOIs | |
State | Published - 1 Oct 2014 |
Externally published | Yes |
Keywords
- Arrays
- Detectors
- Direction-of-arrival estimation
- Estimation
- Target tracking
- Time measurement
- Vectors
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
- Electrical and Electronic Engineering