Bayesian ignorance

Research output: Contribution to journalArticlepeer-review

Abstract

We quantify the effect of Bayesian ignorance by comparing the social cost obtained in a Bayesian game by agents with local views to the expected social cost of agents having global views. Both benevolent agents, whose goal is to minimize the social cost, and selfish agents, aiming at minimizing their own individual costs, are considered. When dealing with selfish agents, we consider both best and worst equilibria outcomes. While our model is general, most of our results concern the setting of network cost sharing (NCS) games. We provide tight asymptotic results on the effect of Bayesian ignorance in directed and undirected NCS games with benevolent and selfish agents. Among our findings we expose the counter-intuitive phenomenon that "ignorance is bliss": Bayesian ignorance may substantially improve the social cost of selfish agents. We also prove that public random bits can replace the knowledge of the common prior in attempt to bound the effect of Bayesian ignorance in settings with benevolent agents. Together, our work initiates the study of the effects of local vs. global views on the social cost of agents in Bayesian contexts.

Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalTheoretical Computer Science
Volume452
DOIs
StatePublished - 21 Sep 2012

Keywords

  • Bayesian games
  • Local vs. global view
  • Network cost sharing

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Bayesian ignorance'. Together they form a unique fingerprint.

Cite this