TY - GEN
T1 - Batch coloring of graphs
AU - Boyar, Joan
AU - Epstein, Leah
AU - Favrholdt, Lene M.
AU - Larsen, Kim S.
AU - Levin, Asaf
N1 - Publisher Copyright: © Springer International Publishing AG 2017.
PY - 2017
Y1 - 2017
N2 - In graph coloring problems, the goal is to assign a positive integer color to each vertex of an input graph such that adjacent vertices do not receive the same color assignment. For classic graph coloring, the goal is to minimize the maximum color used, and for the sum coloring problem, the goal is to minimize the sum of colors assigned to all input vertices. In the offline variant, the entire graph is presented at once, and in online problems, one vertex is presented for coloring at each time, and the only information is the identity of its neighbors among previously known vertices. In batched graph coloring, vertices are presented in k batches, for a fixed integer k ≥ 2, such that the vertices of a batch are presented as a set, and must be colored before the vertices of the next batch are presented. This last model is an intermediate model, which bridges between the two extreme scenarios of the online and offline models. We provide several results, including a general result for sum coloring and results for the classic graph coloring problem on restricted graph classes: We show tight bounds for any graph class containing trees as a subclass (e.g., forests, bipartite graphs, planar graphs, and perfect graphs), and a surprising result for interval graphs and k = 2, where the value of the (strict and asymptotic) competitive ratio depends on whether the graph is presented with its interval representation or not.
AB - In graph coloring problems, the goal is to assign a positive integer color to each vertex of an input graph such that adjacent vertices do not receive the same color assignment. For classic graph coloring, the goal is to minimize the maximum color used, and for the sum coloring problem, the goal is to minimize the sum of colors assigned to all input vertices. In the offline variant, the entire graph is presented at once, and in online problems, one vertex is presented for coloring at each time, and the only information is the identity of its neighbors among previously known vertices. In batched graph coloring, vertices are presented in k batches, for a fixed integer k ≥ 2, such that the vertices of a batch are presented as a set, and must be colored before the vertices of the next batch are presented. This last model is an intermediate model, which bridges between the two extreme scenarios of the online and offline models. We provide several results, including a general result for sum coloring and results for the classic graph coloring problem on restricted graph classes: We show tight bounds for any graph class containing trees as a subclass (e.g., forests, bipartite graphs, planar graphs, and perfect graphs), and a surprising result for interval graphs and k = 2, where the value of the (strict and asymptotic) competitive ratio depends on whether the graph is presented with its interval representation or not.
UR - http://www.scopus.com/inward/record.url?scp=85010651390&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/978-3-319-51741-4_5
DO - https://doi.org/10.1007/978-3-319-51741-4_5
M3 - Conference contribution
SN - 9783319517407
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 52
EP - 64
BT - Approximation and Online Algorithms - 14th International Workshop, WAOA 2016, Revised Selected Papers
A2 - Mastrolilli, Monaldo
A2 - Jansen, Klaus
PB - Springer Verlag
T2 - 14th International Workshop on Approximation and Online Algorithms, WAOA 2016
Y2 - 25 August 2016 through 26 August 2016
ER -