TY - JOUR
T1 - Basic Residues at Position 11 of α-Conotoxin LvIA Influence Subtype Selectivity between α3β2 and α3β4 Nicotinic Receptors via an Electrostatic Mechanism
AU - Haufe, Yves
AU - Kuruva, Veeresh
AU - Samanani, Ziyana
AU - Lokaj, Gonxhe
AU - Kamnesky, Guy
AU - Shadamarshan, Pranav Kumar
AU - Shahoei, Rezvan
AU - Katz, Dana
AU - Sampson, Jared M.
AU - Pusch, Michael
AU - Brik, Ashraf
AU - Nicke, Annette
AU - Leffler, Abba E.
N1 - Publisher Copyright: © 2023 American Chemical Society.
PY - 2023/12/20
Y1 - 2023/12/20
N2 - Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3β2 nAChR over the related α3β4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3β4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3β2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3β4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that β2[K79A] (I79 on β4), but not β2[K78A] (N78 on β4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.
AB - Understanding the determinants of α-conotoxin (α-CTX) selectivity for different nicotinic acetylcholine receptor (nAChR) subtypes is a prerequisite for the design of tool compounds to study nAChRs. However, selectivity optimization of these small, disulfide-rich peptides is difficult not only because of an absence of α-CTX/nAChR co-structures but also because it is challenging to predict how a mutation to an α-CTX will alter its potency and selectivity. As a prototypical system to investigate selectivity, we employed the α-CTX LvIA that is 25-fold selective for the α3β2 nAChR over the related α3β4 nAChR subtype, which is a target for nicotine addiction. Using two-electrode voltage clamp electrophysiology, we identified LvIA[D11R] that is 2-fold selective for the α3β4 nAChR, reversing the subtype preference. This effect is specifically due to the change in charge and not shape of LvIA[D11R], as substitution of D11 with citrulline retains selectivity for the α3β2 nAChR. Furthermore, LvIA[D11K] shows a stronger reversal, with 4-fold selectivity for the α3β4 nAChR. Motivated by these findings, using site-directed mutagenesis, we found that β2[K79A] (I79 on β4), but not β2[K78A] (N78 on β4), largely restores the potency of basic mutants at position 11. Finally, to understand the structural basis of this effect, we used AlphaFold2 to generate models of LvIA in complex with both nAChR subtypes. Both models confirm the plausibility of an electrostatic mechanism to explain the data and also reproduce a broad range of potency and selectivity structure-activity relationships for LvIA mutants, as measured using free energy perturbation simulations. Our work highlights how electrostatic interactions can drive α-CTX selectivity and may serve as a strategy for optimizing the selectivity of LvIA and other α-CTXs.
KW - AlphaFold2
KW - conotoxin
KW - free energy perturbation
KW - nicotinic acetylcholine receptor
KW - peptide synthesis
KW - selectivity
UR - http://www.scopus.com/inward/record.url?scp=85180117005&partnerID=8YFLogxK
U2 - https://doi.org/10.1021/acschemneuro.3c00506
DO - https://doi.org/10.1021/acschemneuro.3c00506
M3 - Article
C2 - 38051211
SN - 1948-7193
VL - 14
SP - 4311
EP - 4322
JO - ACS Chemical Neuroscience
JF - ACS Chemical Neuroscience
IS - 24
ER -