TY - JOUR
T1 - Bacterial inactivation by a carbon nanotube-iron oxide nanocomposite
T2 - A mechanistic study using E. coli mutants
AU - Engel, Maya
AU - Hadar, Yitzhak
AU - Belkin, Shimshon
AU - Lu, Xinglin
AU - Elimelech, Menachem
AU - Chefetz, Benny
N1 - Publisher Copyright: © The Royal Society of Chemistry 2018.
PY - 2018
Y1 - 2018
N2 - Waterborne pathogens are a major health threat and must be eliminated to guarantee safe usage of water for potable purposes. For this purpose, a new carbon-based nanomaterial composed of single-walled carbon nanotubes (SWCNTs) and iron oxides was constructed for bacterial inactivation. Owing to its magnetic properties, the SWCNT-iron oxide nanocomposite may serve as a reusable antimicrobial agent. The nanocomposite material exhibited high antimicrobial activity against Escherichia coli. Successful reuse of the nanocomposite material was achieved by washing with calcium chloride and distilled water, which restored its performance for several successive cycles. To investigate the cytotoxicity mechanisms of the nanocomposite material, we exposed it to single-gene knockout mutant strains of E. coli. Mutants bearing shorter lipopolysaccharide (LPS) layers in the outer membrane (ΔrfaC and ΔrfaG) demonstrated an increased sensitivity in comparison to the wildtype strain, exemplified in enhanced removal by the nanocomposite material. This finding suggests that the LPS acts as a protective shield against the nanocomposite material. Inactivation of mutants impaired in specific oxidative stress defense mechanisms (ΔsodA, ΔkatG and ΔsoxS) emphasized that oxidative stress plays a significant role in the inactivation mechanism of the nanocomposite. This study sheds light on the mechanisms of bacterial inactivation by carbon-based nanomaterials and advances their potential implementation for water disinfection.
AB - Waterborne pathogens are a major health threat and must be eliminated to guarantee safe usage of water for potable purposes. For this purpose, a new carbon-based nanomaterial composed of single-walled carbon nanotubes (SWCNTs) and iron oxides was constructed for bacterial inactivation. Owing to its magnetic properties, the SWCNT-iron oxide nanocomposite may serve as a reusable antimicrobial agent. The nanocomposite material exhibited high antimicrobial activity against Escherichia coli. Successful reuse of the nanocomposite material was achieved by washing with calcium chloride and distilled water, which restored its performance for several successive cycles. To investigate the cytotoxicity mechanisms of the nanocomposite material, we exposed it to single-gene knockout mutant strains of E. coli. Mutants bearing shorter lipopolysaccharide (LPS) layers in the outer membrane (ΔrfaC and ΔrfaG) demonstrated an increased sensitivity in comparison to the wildtype strain, exemplified in enhanced removal by the nanocomposite material. This finding suggests that the LPS acts as a protective shield against the nanocomposite material. Inactivation of mutants impaired in specific oxidative stress defense mechanisms (ΔsodA, ΔkatG and ΔsoxS) emphasized that oxidative stress plays a significant role in the inactivation mechanism of the nanocomposite. This study sheds light on the mechanisms of bacterial inactivation by carbon-based nanomaterials and advances their potential implementation for water disinfection.
UR - http://www.scopus.com/inward/record.url?scp=85042177695&partnerID=8YFLogxK
U2 - https://doi.org/10.1039/c7en00865a
DO - https://doi.org/10.1039/c7en00865a
M3 - مقالة
SN - 2051-8153
VL - 5
SP - 372
EP - 380
JO - Environmental Science: Nano
JF - Environmental Science: Nano
IS - 2
ER -