TY - GEN
T1 - Automated Verification of Social Laws in Numeric Settings
AU - Nir, Ronen
AU - Shleyfman, Alexander
AU - Karpas, Erez
N1 - Publisher Copyright: Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - It is possible for agents operating in a shared environment to interfere with one another. One mechanism of coordination is called Social Law. Enacting such a law in a multi-agent setting restricts agents’ behaviors. Robustness, in this case, ensures that the agents do not harmfully interfere with each other and that each agent achieves its goals regardless of what other agents do. Previous work on social law verification examined only the case of boolean state variables. However, many real-world problems require reasoning with numeric variables. Moreover, numeric fluents allow a more compact representation of multiple planning problems. In this paper, we develop a method to verify whether a given social law is robust via compilation to numeric planning. A solution to this compilation constitutes a counterexample to the robustness of the problem, i.e., evidence of cross-agent conflict. Thus, the social law is robust if and only if the proposed compilation is unsolvable. We empirically verify robustness in multiple domains using state-of-the-art numeric planners. Additionally, this compilation raises a challenge by generating a set of non-trivial numeric domains where unsolvability should be either proved or disproved.
AB - It is possible for agents operating in a shared environment to interfere with one another. One mechanism of coordination is called Social Law. Enacting such a law in a multi-agent setting restricts agents’ behaviors. Robustness, in this case, ensures that the agents do not harmfully interfere with each other and that each agent achieves its goals regardless of what other agents do. Previous work on social law verification examined only the case of boolean state variables. However, many real-world problems require reasoning with numeric variables. Moreover, numeric fluents allow a more compact representation of multiple planning problems. In this paper, we develop a method to verify whether a given social law is robust via compilation to numeric planning. A solution to this compilation constitutes a counterexample to the robustness of the problem, i.e., evidence of cross-agent conflict. Thus, the social law is robust if and only if the proposed compilation is unsolvable. We empirically verify robustness in multiple domains using state-of-the-art numeric planners. Additionally, this compilation raises a challenge by generating a set of non-trivial numeric domains where unsolvability should be either proved or disproved.
UR - http://www.scopus.com/inward/record.url?scp=85168236750&partnerID=8YFLogxK
U2 - 10.1609/aaai.v37i10.2636126425
DO - 10.1609/aaai.v37i10.2636126425
M3 - منشور من مؤتمر
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 12087
EP - 12094
BT - AAAI-23 Technical Tracks 10
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -