Abstract
We report on the atomic spectroscopy and laser frequency stabilization using a new type of a miniaturized glass vapor cell with a scalable thickness varying from 500 nm up to 8 μm. The cell is fabricated by lithography and etching techniques in a Pyrex glass substrate, followed by anodic bonding. It is filled with rubidium vapor using a distillation procedure. This simple and cost-effective fabrication method provides an attractive and compact solution for atomic cells, with applications in quantum metrology, sensing, communication, and light-vapor manipulations at the subwavelength scale. Using the fabricated cell, we have performed fluorescence and transmission spectroscopy of the Rubidium D2 line and observed sub-Doppler broadened lines. As an example, for a potential application, we have used the fabricated cell to demonstrate the stabilization of a 780 nm diode laser to the level about 10-10 in fractional frequency.
Original language | English |
---|---|
Article number | 050601 |
Journal | Journal of Vacuum Science and Technology B |
Volume | 38 |
Issue number | 5 |
DOIs | |
State | Published - 1 Sep 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering
- Materials Chemistry