Assimilation of `omics' strategies to study the cuticle layer and suberin lamellae plants

Hagai Cohen, Jedrzej Szymanski, Asaph Aharoni

Research output: Contribution to journalArticlepeer-review

Abstract

The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of `omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, `omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary `omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
Original languageEnglish
Pages (from-to)5389-5400
Number of pages12
JournalJournal of Experimental Botany
Volume68
Issue number19
Early online date12 Oct 2017
DOIs
StatePublished - 9 Nov 2017

All Science Journal Classification (ASJC) codes

  • Physiology
  • Plant Science

Fingerprint

Dive into the research topics of 'Assimilation of `omics' strategies to study the cuticle layer and suberin lamellae plants'. Together they form a unique fingerprint.

Cite this