TY - JOUR
T1 - Assimilation of `omics' strategies to study the cuticle layer and suberin lamellae plants
AU - Cohen, Hagai
AU - Szymanski, Jedrzej
AU - Aharoni, Asaph
N1 - The authors would like to acknowledge Yonghui Dong for performing the MALDI-MSI on wheat flag leaves and for kindly providing Fig. 5. We thank the Adelis Foundation, Leona M. and Harry B. Helmsley Charitable Trust, Jeanne and Joseph Nissim Foundation for Life Sciences, Tom and Sondra Rykoff Family Foundation Research and the Raymond Burton Plant Genome Research Fund for supporting the Asaph Aharoni lab activity. AA is the incumbent of the Peter J. Cohn Professorial Chair.
PY - 2017/11/9
Y1 - 2017/11/9
N2 - The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of `omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, `omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary `omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
AB - The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of `omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, `omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary `omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
UR - http://www.scopus.com/inward/record.url?scp=85041853132&partnerID=8YFLogxK
U2 - 10.1093/jxb/erx348
DO - 10.1093/jxb/erx348
M3 - مقالة
SN - 0022-0957
VL - 68
SP - 5389
EP - 5400
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 19
ER -