ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews

Mike D'Arcy, Alexis Ross, Erin Bransom, Bailey Kuehl, Jonathan Bragg, Tom Hope, Doug Downey

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce the task of automatically revising scientific papers based on peer feedback and release ARIES, a dataset of review comments and their corresponding paper edits. The data is drawn from real reviewer-author interactions from computer science, and we provide labels linking each reviewer comment to the specific paper edits made by the author in response. We automatically create a high-precision silver training set, as well as an expert-labeled test set that shows high inter-annotator agreement. In experiments with 10 models covering the state of the art, we find that they struggle even to identify which edits correspond to a comment-especially when the relationship between the edit and the comment is indirect and requires reasoning to uncover. We also extensively analyze GPT-4's ability to generate edits given a comment and the original paper. We find that it often succeeds on a superficial level, but tends to rigidly follow the wording of the feedback rather than the underlying intent, and lacks technical details compared to human-written edits.

Original languageEnglish
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages6985-7001
Number of pages17
ISBN (Electronic)9798891760943
StatePublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period11/08/2416/08/24

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews'. Together they form a unique fingerprint.

Cite this