@inproceedings{c3803d8fc796496c875832d3e70ef01e,
title = "ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews",
abstract = "We introduce the task of automatically revising scientific papers based on peer feedback and release ARIES, a dataset of review comments and their corresponding paper edits. The data is drawn from real reviewer-author interactions from computer science, and we provide labels linking each reviewer comment to the specific paper edits made by the author in response. We automatically create a high-precision silver training set, as well as an expert-labeled test set that shows high inter-annotator agreement. In experiments with 10 models covering the state of the art, we find that they struggle even to identify which edits correspond to a comment-especially when the relationship between the edit and the comment is indirect and requires reasoning to uncover. We also extensively analyze GPT-4's ability to generate edits given a comment and the original paper. We find that it often succeeds on a superficial level, but tends to rigidly follow the wording of the feedback rather than the underlying intent, and lacks technical details compared to human-written edits.",
author = "Mike D'Arcy and Alexis Ross and Erin Bransom and Bailey Kuehl and Jonathan Bragg and Tom Hope and Doug Downey",
note = "Publisher Copyright: {\textcopyright} 2024 Association for Computational Linguistics.; 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 ; Conference date: 11-08-2024 Through 16-08-2024",
year = "2024",
language = "الإنجليزيّة",
series = "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
publisher = "Association for Computational Linguistics (ACL)",
pages = "6985--7001",
editor = "Lun-Wei Ku and Martins, {Andre F. T.} and Vivek Srikumar",
booktitle = "Long Papers",
address = "الولايات المتّحدة",
}