Area law for steady states of detailed-balance local Lindbladians

Raz Firanko, Moshe Goldstein, Itai Arad

Research output: Contribution to journalArticlepeer-review

Abstract

We study steady-states of quantum Markovian processes whose evolution is described by local Lindbladians. We assume that the Lindbladian is gapped and satisfies quantum detailed balance with respect to a unique full-rank steady state σ. We show that under mild assumptions on the Lindbladian terms, which can be checked efficiently, the Lindbladian can be mapped to a local Hamiltonian on a doubled Hilbert space that has the same spectrum and a ground state that is the vectorization of σ1/2. Consequently, we can use Hamiltonian complexity tools to study the steady states of such open systems. In particular, we show an area-law in the mutual information for the steady state of such 1D systems, together with a tensor-network representation that can be found efficiently.

Original languageEnglish
Article number051901
JournalJournal of Mathematical Physics
Volume65
Issue number5
DOIs
StatePublished - 1 May 2024

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Area law for steady states of detailed-balance local Lindbladians'. Together they form a unique fingerprint.

Cite this