TY - GEN
T1 - Are Your Keys Protected? Time Will Tell
AU - Dov, Yoav Ben
AU - David, Liron
AU - Naor, Moni
AU - Tzalik, Elad
N1 - Publisher Copyright: © Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik.
PY - 2024/8
Y1 - 2024/8
N2 - Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining secure implementation of algorithms and cryptographic protocols, and have been widely researched for decades. While cryptographic definitions for the security of cryptographic systems have been well established for decades, none of these accepted definitions take into account the running time information leaked from executing the system. In this work, we give the foundation of new cryptographic definitions for cryptographic systems that take into account information about their leaked running time, focusing mainly on keyed functions such as signature and encryption schemes. Specifically, (1) We define several cryptographic properties to express the claim that the timing information does not help an adversary to extract sensitive information, e.g. the key or the queries made. We highlight the definition of key-obliviousness, which means that an adversary cannot tell whether it received the timing of the queries with the actual key or the timing of the same queries with a random key. (2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-sized domain. This construction is not “fixed-time, ” and at the same time is secure against any number of queries even in case the adversary knows the running time exactly. Our construction, which we call Janus Sometimes Recurse, is a variant of the “Sometimes Recurse” shuffle by Morris and Rogaway. (3) We suggest a new security notion for keyed functions, called noticeable security, and prove that cryptographic schemes that have noticeable security remain secure even when the exact timings are leaked, provided the implementation is key-oblivious. We show that our notion applies to cryptographic signatures, private key encryption and PRPs.
AB - Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining secure implementation of algorithms and cryptographic protocols, and have been widely researched for decades. While cryptographic definitions for the security of cryptographic systems have been well established for decades, none of these accepted definitions take into account the running time information leaked from executing the system. In this work, we give the foundation of new cryptographic definitions for cryptographic systems that take into account information about their leaked running time, focusing mainly on keyed functions such as signature and encryption schemes. Specifically, (1) We define several cryptographic properties to express the claim that the timing information does not help an adversary to extract sensitive information, e.g. the key or the queries made. We highlight the definition of key-obliviousness, which means that an adversary cannot tell whether it received the timing of the queries with the actual key or the timing of the same queries with a random key. (2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-sized domain. This construction is not “fixed-time, ” and at the same time is secure against any number of queries even in case the adversary knows the running time exactly. Our construction, which we call Janus Sometimes Recurse, is a variant of the “Sometimes Recurse” shuffle by Morris and Rogaway. (3) We suggest a new security notion for keyed functions, called noticeable security, and prove that cryptographic schemes that have noticeable security remain secure even when the exact timings are leaked, provided the implementation is key-oblivious. We show that our notion applies to cryptographic signatures, private key encryption and PRPs.
KW - Key oblivious
KW - Keyed functions
KW - Noticeable security
KW - Side channel attacks
KW - Timing attacks
UR - http://www.scopus.com/inward/record.url?scp=85202435071&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ITC.2024.3
DO - https://doi.org/10.4230/LIPIcs.ITC.2024.3
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 5th Conference on Information-Theoretic Cryptography, ITC 2024
A2 - Aggarwal, Divesh
T2 - 5th Conference on Information-Theoretic Cryptography, ITC 2024
Y2 - 14 August 2024 through 16 August 2024
ER -