TY - GEN
T1 - Are we modeling the task or the annotator? An investigation of annotator bias in natural language understanding datasets
AU - Geva, Mor
AU - Goldberg, Yoav
AU - Berant, Jonathan
N1 - Publisher Copyright: © 2019 Association for Computational Linguistics
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Crowdsourcing has been the prevalent paradigm for creating natural language understanding datasets in recent years. A common crowdsourcing practice is to recruit a small number of high-quality workers, and have them massively generate examples. Having only a few workers generate the majority of examples raises concerns about data diversity, especially when workers freely generate sentences. In this paper, we perform a series of experiments showing these concerns are evident in three recent NLP datasets. We show that model performance improves when training with annotator identifiers as features, and that models are able to recognize the most productive annotators. Moreover, we show that often models do not generalize well to examples from annotators that did not contribute to the training set. Our findings suggest that annotator bias should be monitored during dataset creation, and that test set annotators should be disjoint from training set annotators.
AB - Crowdsourcing has been the prevalent paradigm for creating natural language understanding datasets in recent years. A common crowdsourcing practice is to recruit a small number of high-quality workers, and have them massively generate examples. Having only a few workers generate the majority of examples raises concerns about data diversity, especially when workers freely generate sentences. In this paper, we perform a series of experiments showing these concerns are evident in three recent NLP datasets. We show that model performance improves when training with annotator identifiers as features, and that models are able to recognize the most productive annotators. Moreover, we show that often models do not generalize well to examples from annotators that did not contribute to the training set. Our findings suggest that annotator bias should be monitored during dataset creation, and that test set annotators should be disjoint from training set annotators.
UR - http://www.scopus.com/inward/record.url?scp=85084317686&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 1161
EP - 1166
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
T2 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Y2 - 3 November 2019 through 7 November 2019
ER -