TY - GEN
T1 - Approximate nearest neighbor search amid higher-dimensional flats
AU - Agarwal, Pankaj K.
AU - Rubin, Natan
AU - Sharir, Micha
N1 - Publisher Copyright: © Pankaj K. Agarwal, Natan Rubin, and Micha Sharir.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - We consider the approximate nearest neighbor (ANN) problem where the input set consists of n k-flats in the Euclidean Rd, for any fixed parameters 0 ≤ k < d, and where, for each query point q, we want to return an input flat whose distance from q is at most (1 + ϵ) times the shortest such distance, where ϵ > 0 is another prespecified parameter. We present an algorithm that achieves this task with nk+1(log(n)/ ϵ)O(1) storage and preprocessing (where the constant of proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n)) time (where the power of the logarithm depends on d and k). In particular, we need only nearquadratic storage to answer ANN queries amid a set of n lines in any fixed-dimensional Euclidean space. As a by-product, our approach also yields an algorithm, with similar performance bounds, for answering exact nearest neighbor queries amid k-flats with respect to any polyhedral distance function. Our results are more general, in that they also provide a tradeoff between storage and query time.
AB - We consider the approximate nearest neighbor (ANN) problem where the input set consists of n k-flats in the Euclidean Rd, for any fixed parameters 0 ≤ k < d, and where, for each query point q, we want to return an input flat whose distance from q is at most (1 + ϵ) times the shortest such distance, where ϵ > 0 is another prespecified parameter. We present an algorithm that achieves this task with nk+1(log(n)/ ϵ)O(1) storage and preprocessing (where the constant of proportionality in the big-O notation depends on d), and can answer a query in O(polylog(n)) time (where the power of the logarithm depends on d and k). In particular, we need only nearquadratic storage to answer ANN queries amid a set of n lines in any fixed-dimensional Euclidean space. As a by-product, our approach also yields an algorithm, with similar performance bounds, for answering exact nearest neighbor queries amid k-flats with respect to any polyhedral distance function. Our results are more general, in that they also provide a tradeoff between storage and query time.
KW - Approximate nearest neighbor search
KW - K-flats
KW - Linear programming queries
KW - Polyhedral distance functions
UR - http://www.scopus.com/inward/record.url?scp=85030543725&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ESA.2017.4
DO - https://doi.org/10.4230/LIPIcs.ESA.2017.4
M3 - Conference contribution
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 25th European Symposium on Algorithms, ESA 2017
A2 - Sohler, Christian
A2 - Pruhs, Kirk
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 25th European Symposium on Algorithms, ESA 2017
Y2 - 4 September 2017 through 6 September 2017
ER -