Abstract
We study the adjustment and use of the Max-sum algorithm for solving Asymmetric Distributed Constraint Optimization Problems (ADCOPs). First, we formalize asymmetric factor-graphs and apply the different versions of Max-sum to them. Apparently, in contrast to local search algorithms, most Max-sum versions perform similarly when solving symmetric and asymmetric problems and some even perform better on asymmetric problems. Second, we prove that the convergence properties of Max-sum_ADVP (an algorithm that was previously found to outperform standard Max-sum and Bounded Max-sum) and the quality of the solutions it produces, are dependent on the order between nodes involved in each constraint, i.e., the inner constraint order (ICO). A standard ICO allows to reproduce the properties achieved for symmetric problems. Third, we demonstrate that a non-standard ICO can be used to balance exploration and exploitation. Our results indicate that Max-sum_ADVP with non-standard ICO and Damped Max-sum, when solving asymmetric problems, both outperform other versions of Max-sum, as well as local search algorithms specifically designed for solving ADCOPs.
Original language | American English |
---|---|
Article number | 13 |
Journal | Autonomous Agents and Multi-Agent Systems |
Volume | 34 |
Issue number | 1 |
DOIs | |
State | Published - 1 Apr 2020 |
Keywords
- Distributed constraint optimization
- Incomplete inference distributed algorithms
- Max-sum
All Science Journal Classification (ASJC) codes
- Artificial Intelligence