Abstract
The present invention relates to an apparatus (26) and a method for determining a fractional flow reserve. For this purpose, a new personalized hyperemic boundary condition model is provided. The personalized hyperemic boundary condition model is used to condition a parametric model for a simulation of a blood flow in a coronary tree (34) of a human subject. As a basis for the personalized hyperemic boundary condition model, a predefined hyperemic boundary condition model is used, which represents empirical derived hyperemic boundary condition parameters. However, these empirical hyperemic boundary condition parameters are not specific for a human subject under examination. In order to achieve a specification of the respective predefined hyperemic boundary condition model, specific human subject features are derived from a volumetric image of the coronary tree of the human subject. These features are used to adjust the predefined hyperemic boundary condition model resulting in a personalized hyperemic boundary condition model. As an effect, a flow simulation using the parametric model conditioned by the personalized hyperemic boundary condition model. As an effect, a flow simulation using the parametric model conditioned by the personalized hyperemic boundary condition model improves the performance of flow simulation in order to determine an enhanced fractional flow reserve.
Original language | English |
---|---|
Patent number | US 11039804 |
State | Published - 22 Jun 2021 |
Externally published | Yes |