Abstract
Lung infection is the leading cause of morbidity and mortality in cystic fibrosis (CF) patients and is mainly dominated by Pseudomonas aeruginosa. Treatment of CF-associated lung infections is problematic because the drugs are vulnerable to multidrug-resistant pathogens, many of which are major biofilm producers like P. aeruginosa. Antimicrobial peptides (AMPs) are essential components in all life forms and exhibit antimicrobial activity. Here we investigated a series of AMPs (d,l-K6L9), each composed of six lysines and nine leucines but differing in their sequence composed of l- and d-amino acids. The d,l-K6L9 peptides showed antimicrobial and antibiofilm activities against P. aeruginosa from CF patients. Furthermore, the data revealed that the d,l-K6L9 peptides are stable and resistant to degradation by CF sputum proteases and maintain their activity in a CF sputum environment. Additionally, the d,l-K6L9 peptides do not induce bacterial resistance. Overall, these findings should assist in the future development of alternative treatments against resistant bacterial biofilms.
Original language | English |
---|---|
Pages (from-to) | 9050-9062 |
Number of pages | 13 |
Journal | Journal of Medicinal Chemistry |
Volume | 65 |
Issue number | 13 |
Early online date | 27 Jun 2022 |
DOIs | |
State | Published - 14 Jul 2022 |
All Science Journal Classification (ASJC) codes
- Drug Discovery
- Molecular Medicine